The metaplectic Casselman-Shalika formula

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Metaplectic Casselman-shalika Formula

This paper studies spherical Whittaker functions for central extensions of reductive groups over local fields. We follow the development of Chinta-Offen to produce a metaplectic Casselman-Shalika formula for tame covers of all unramified groups.

متن کامل

A METAPLECTIC CASSELMAN-SHALIKA FORMULA FOR GLr

We provide formulas for various bases of spherical Whittaker functions on the n-fold metaplectic cover of GLr over a p-adic field and show that there is a basis of symmetric functions in the complex parameter. In addition we relate a specific spherical Whittaker function to the p-power part of the Weyl group multiple Dirichlet series for the root system of type Ar−1 constructed from nth order G...

متن کامل

The Casselman-Shalika Formula for a Distinguished Model

Unramified Whittaker functions and their analogues occur naturally in number theory as terms in the Fourier expansions of automorphic forms. Precise information about these functions is useful in many aspects of study, such as in the construction of L-functions. In this paper, the method of Casselman-Shalika is used to derive explicit values for the analogue of the unramified Whittaker function...

متن کامل

Adelic Fourier - Whittaker Coefficients and the Casselman - Shalika formula

In their paper Metaplectic Forms, D. A. Kazhdan and S. J. Patterson developed a generalization of automorphic forms that are defined on metaplectic groups. These groups are non-trivial covering groups of usual algebraic groups, and the forms defined on them are representations that respect the covering. As in the case for automorphic forms, these representations fall into a principle series, in...

متن کامل

Combinatorics of Casselman-shalika Formula in Type A

In the recent works of Brubaker-Bump-Friedberg, Bump-Nakasuji, and others, the product in the Casselman-Shalika formula is written as a sum over a crystal. The coefficient of each crystal element is defined using the data coming from the whole crystal graph structure. In this paper, we adopt the tableau model for the crystal and obtain the same coefficients using data from each individual table...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2015

ISSN: 0002-9947,1088-6850

DOI: 10.1090/tran/6597